
Scott Kohn
with

Tammy Dahlgren, Tom Epperly, and Gary Kumfert

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

October 10, 2001

Language Interoperability with Babel

2CASC

Overview

➨ Why you should care about language interoperability

� What Babel is and how it works

� “Hello World” tutorial

� Future work and contact information

3CASC

DOE computational scientists use many
different programming languages

Simulation Framework
(C)

Solver Library
(C++)

Numerical Routines
(f90)

Scripting Driver
(Python)

Visualization System
(Java)

ACTS libraries use Fortran, C, and C++

4CASC

Why you should care about language
interoperability

As a library developer, you have customers who are
developing software in different languages (and you
don’t want to develop the language support by hand!)

As an application developer, you need to combine
scientific libraries written in different languages

As a researcher, you would like to prototype a new
preconditioner in a “high-level” language like Python or
MATLAB but still call existing scientific solver libraries

5CASC

Existing language interoperability
approaches are “point-to-point” solutions

Java JNI
Native

SWIG/SILOON
Platform Dependent

Python Library

C

C++

f77

f90

Python

Java
Arrows indicate direction
of supported function calls

6CASC

Babel provides a unified approach in
which all languages are considered peers

C

C++

f77

f90

Python

Java

Babel

Somewhat similar to the
CORBA approach in the
business domain

7CASC

There are many tradeoffs when choosing
a language interoperability approach

� Babel may not be the best solution for your problem

� SILOON or SWIG are outstanding tools
— generate glue code to wrap existing C or C++ libraries
— mostly automatic; some minor annotations may be necessary
— however, languages are not peers (e.g., C++ cannot call Python)

� Babel supports a “peer” model but requires more effort
— library developers must write a separate interface definition file
— library developers manually merge library with Babel glue code
— Babel limits some language constructs (e.g., C++ templates)

8CASC

Overview

� Why you should care about language interoperability

➨ What Babel is and how it works

� “Hello World” tutorial

� Future work and contact information

9CASC

Babel design goals

� Mix Fortran, C, C++, Python, and Java as
peers

� Initial focus on same address-space
performance

� Provide features unique to scientific libraries
— complex numbers and dense multi-dimensional arrays
— support parallel data redistribution for distributed

objects

� Provide common useful run-time capabilities
— reference counting and dynamic casting
— multi-language exceptions
— remote procedure calls for distributed software

10CASC

Babel uses a SIDL interface description
of a library to generate glue code

� SIDL is a “scientific” interface definition
language
— we modified industry IDL technology for the scientific

domain
— SIDL describes calling interfaces (e.g., library

specification)
— our tools automatically generate code to “glue

languages”

package Hypre {
interface Vector {

void axpy(in Vector x, in double a);
double dot(in Vector x);
…

};
interface Matrix {

…
};

};

Babel
tool

f77

C

C++

Python

f90
library writer develops this

user runs this ...

… and gets this

11CASC

Short SIDL example from a collaboration
with the hypre linear solvers team

version Hypre 1.0;

package Hypre {
interface Vector {

int copy(in Vector x);
int dot(in Vector x, out double d);
int axpy(in double a, in Vector x);

}

interface Solver extends LinearOperator {
int apply(in Vector b, out Vector x);
int getResidual(out Vector resid);

}

class StructVector implements-all Vector {
void init(in StructGrid grid);
int getNumGhost(out array<int> values);

}

class StructJacobi implements-all Solver {
int setParameterDouble(in string name, in double value);
int setup(in LinearOperator A, in Vector b, in Vector x);

}
}

12CASC

Babel’s SIDL combines ideas from
CORBA’s IDL and Java

� Java-like inheritance with classes and interfaces

� Methods may be static, final, or abstract

� Methods support these return and argument types:
— bool, char, int, long, opaque, string
— dcomplex, double, fcomplex, float
— any user-defined interface, class, or enumerated type
— dense multi-dimensional arrays of the above types

� Method arguments must be labeled in, inout, or out

� Optional throws clause for method exceptions

13CASC

Babel generates stubs, skeletons, and an
intermediate object representation (IOR)

Application

Stubs

Skels

IORs

Impls

� Application: uses software in user’s
language of choice

� Client Side Stubs: translate from
application language to IOR

� Internal Object Representation

� Server Side Skeletons: translate from
IOR to implementation language

� Implementation: library developers’
language of choice

14CASC

We used SIDL technology to explore
design issues for the hypre library

� hypre supplies solver technology to DOE applications

� We generated a separate Babel interface for hypre
— hypre designers explored new design approaches using our tools
— automatic bindings for Fortran and other languages
— parallel performance overheads too small to measure
— improved SIDL and Babel based on feedback from hypre

S. Kohn, G. Kumfert, J. Painter, and C. Ribbens.
“Divorcing Language Dependencies from a
Scientific Software Library,” Proceedings of the
SIAM Conference on Parallel Processing for
Scientific Computing, 2001

hypre library

MPI

official hypre
interface (ANSI C)

Babel interface
(optional)

C++ PythonF77

15CASC

Current status of Babel (v0.6)

� Language support
— f77, C, C++, and Python “finished”
— Java client “finished” (except for arrays of user-defined

objects)
— future language support: f90 and MATLAB

� Regression suite checks over 3000 different
cases

� Run-time support
— safe dynamic casts and cross-language reference

counting
— multi-language exceptions (e.g., throw in C++, catch in

Java)
— dynamic loading similar to Java’s Class.forName()

http://www.llnl.gov/CASC/components

16CASC

Overview

� Why you should care about language interoperability

� What Babel is and how it works

➨ “Hello World” tutorial

� Future work and contact information

17CASC

Hello World:
SIDL input file

// hello.sidl
version Example 1.0;

package Example {
class Hello {

string getMsg();
}

}

18CASC

Hello World:
Babel generates a number of source files

hello.sidl

Example_Hello_Skel.c

Example_Hello_Impl.h

Example_Hello_Stub.c

Example_Hello.h

one set for each
class & interface

Example_Hello_IOR.[hc]

19CASC

Hello World:
C implementation

/* Example_Hello_Impl.c */

/* Omit constructor and destructor function bodies */

char*
impl_Example_Hello_getMsg(

Example_Hello self)
{

/* DO-NOT-DELETE splicer.begin(Example.Hello.getMsg) */
return strdup(“Hello, world!”);
/* DO-NOT-DELETE splicer.end(Example.Hello.getMsg) */

}

Method implementation Code between “splicer”
comments saved during
code re-generation

Generated by Babel

20CASC

Hello World:
Fortran 77 implementation

C Example_Hello_Impl.f

C Omit constructor and destructor function bodies

subroutine Example_Hello_getMsg_impl(self, retval)
integer *8 self
character *(*) retval

C DO-NOT-DELETE splicer.begin(Example.Hello.getMsg)
retval = ‘Hello, world!’

C DO-NOT-DELETE splicer.end(Example.Hello.getMsg)
end

Note: return value currently at end of
argument list to simplify Fortran portability

21CASC

Hello World:
C++ implementation

// Example_Hello_Impl.cc

// Omit constructor and destructor function bodies

string
Example::Hello_impl::getMsg() throw()
{
// DO-NOT-DELETE splicer.begin(Example.Hello.getMsg)
return string(“Hello, world!”);
// DO-NOT-DELETE splicer.end(Example.Hello.getMsg)

}

22CASC

Hello World:
Python implementation

Example/Hello_Impl.py

Omit constructor and destructor function bodies

class Hello:

def getMsg(self):
DO-NOT-DELETE splicer.begin(Example.Hello.getMsg)
return “Hello, World!”
DO-NOT-DELETE splicer.end(Example.Hello.getMsg)

23CASC

Hello World:
C client

/* main.c */
#include <stdio.h>
#include “Example_Hello.h”

int main(int argc, char** argv)
{
Example_Hello h = Example_Hello__create();
char* msg = Example_Hello_getMsg(h);
Example_Hello_deleteReference(h);

printf(“%s\n”, msg);
free(msg);

return 0;
}

Create and destroy “hello” object

24CASC

Hello World:
Fortran 77 client

C main.f

program main
integer *8 h
character *32 msg

call Example_Hello__create_f(h)
call Example_Hello_getMsg_f(h, msg)
call Example_Hello_deleteReference_f(h)

print *, msg

return
end

25CASC

Hello World:
C++ client

// main.cc
#include <iostream>
#include “Example_Hello.hh”

int main(int argc, char** argv)
{
Example::Hello h = Example::Hello::_create();
string msg = h.getMsg();
std::cout << msg << endl;

}

No explicit deallocation in C++ since reference counting
and type conversion are managed by smart pointers

26CASC

Hello World:
Python client

main.py
import Example.Hello

if __name__ == ‘__main__’:
h = Example.Hello.Hello()
print h.getMsg()

27CASC

Hello World:
Java client

// HelloClient.java

public class HelloClient {
public static void main(String args[]) {

try {
Example.Hello h = new Example.Hello();
String msg = h.getMsg();
System.out.println(msg);

} catch (Throwable ex) {
System.err.println(ex.toString());

}
}

}

28CASC

Overview

� Why you should care about language interoperability

� What Babel is and how it works

� “Hello World” tutorial

➨ Future work and contact information

29CASC

Future research directions

� Add language support for Fortran 90 and MATLAB (?)

� Investigate component semantic descriptions in SIDL
— add constructs that describe “behavior” of classes
— automatically generate simple run-time assertions

� Support distributed communication
— remote procedure calls (like CORBA or Java RMI)
— parallel data redistribution (M processors to N processors)

� Possibly integrate Babel and SILOON technology

� Work with other library and application groups

30CASC

Contact information

� Project web site

� Bug database web site

� Project mail alias

� Mailing lists

http://www.llnl.gov/CASC/components

http://www-casc.llnl.gov/bugs

components@llnl.gov or skohn@llnl.gov

babel-announce@llnl.gov and babel-users@llnl.gov

31CASC

Work performed under the auspices of the U. S. Department
of Energy by the University of California, Lawrence Livermore
National Laboratory under Contract W-7405-Eng-48.

UCRL-VG-144649 10 October 2001

